教育王國
標題: F.2數學題 [打印本頁]
作者: cman_li 時間: 08-9-22 23:42 標題: F.2數學題
Suppose x,y,z is any integer
If 8x+4y-5z is divisible by 7, show that 9x+y+4z is also divisible by 7.
如果F.2計這條數會唔會太深
[ 本帖最後由 cman_li 於 08-9-23 09:35 編輯 ]
作者: swallowngxx 時間: 08-9-23 22:37
原帖由 cman_li 於 08-9-22 23:42 發表 
Suppose x,y,z is any integer
If 8x+4y-5z is divisible by 7, show that 9x+y+4z is also divisible by 7.
如果F.2計這條數會唔會太深
x=y=z都是相同, 我仔仔剛上中二, 未學過這數式, 但他計到, 唔知算唔算深.
[ 本帖最後由 swallowngxx 於 08-9-23 22:39 編輯 ]
作者: cman_li 時間: 08-9-23 22:50
原帖由 swallowngxx 於 08-9-23 22:37 發表 
x=y=z都是相同, 我仔仔剛上中二, 未學過這數式, 但他計到, 唔知算唔算深.
唔係計x,y,z 而係用 steps 去証明
Answer:
Let 8x+4y-5z = 7K where K is an integer
Firstly,
2 * ( 8x+ 4y - 5z ) - ( 9x + y + 4z )
= 16x + 8y -10z -9x -y -4z
= 7x +7y -14z
= 7 * (x+y-2z)
=7 * N where N is an integer
This implies that
2* (7K) - (9x+y+4z) = 7N
9+y+4z = 14K-7N
= 7 *(2K-N)
Therefore 9x+y+4z is also divisible by 7
[ 本帖最後由 cman_li 於 08-9-23 23:02 編輯 ]
作者: daisychan 時間: 08-9-23 22:58
原帖由 swallowngxx 於 08-9-23 22:37 發表 
x=y=z都是相同, 我仔仔剛上中二, 未學過這數式, 但他計到, 唔知算唔算深.
Dear swallowngxx,
I'm afraid your son is conceptually wrong.
He forgot the statement that " x, y, z are any integers"
8x + 4y - 5z is divisible by 7
Therefore,
16x + 8y - 10z is divisible by 7
16x + 8y - 10z - 7(x+y+z) is divisible by 7
i.e. 9x + y - 17z is divisible by 7
i.e. 9x + y - 17z +21z is divisible by 7
i.e. 9x +y + 4z is divisible by 7
I consider this question is difficult for most of the Form 2 students. Only the top 5% in Maths can tackle it.
[ 本帖最後由 daisychan 於 08-9-23 22:59 編輯 ]
作者: fungsir 時間: 08-9-23 23:16

原帖由 cman_li 於 08-9-22 23:42 發表 
Suppose x,y,z is any integer
If 8x+4y-5z is divisible by 7, show that 9x+y+4z is also divisible by 7.
如果F.2計這條數會唔會太深
8x+4y-5z
= (7x+7y-7z) + (x-3y+2z) ....... (1)
∵ 8x+4y-5z and 7x+7y-7z are divisible by 7
∴ x-3y+2z is also divisible by 7 ...... (2)
9x+y+4z
= (8x+4y-5z) + (x-3y+9z)
= (8x+4y-5z) + (x-3y+2z) + (7z)
∵ 8x+4y-5z and x-3y+2z and 7z are divisible by 7
∴ 9x+y+4z is also divisible by 7
這題應不是中學的恆常課內容, 或許是奧數題吧.
未學過唔識不足為奇. (即是深la)
作者: ZZdaphne 時間: 08-9-23 23:27
原帖由 fungsir 於 08-9-23 23:16 發表 
8x+4y-5z
= (7x+7y-7z) + (x-3y+2z) ....... (1)
∵ 8x+4y-5z and 7x+7y-7z are divisible by 7
∴ x-3y+2z is also divisible by 7 ...... (2)
9x+y+4z
= (8x+4y-5z) + (x-3y+9z)
= (8x+4y-5z) + (x-3y+2z) + (7z)
∵ 8x+4y-5z and x-3y+2z and 7z are divisible by 7
∴ 9x+y+4z is also divisible by 7
這題應不是中學的恆常課內容, 或許是奧數題吧.
未學過唔識不足為奇. (即是深la)
wo, cool
解釋好清楚,明白。
你好勁!!!!!
Fung sir

[ 本帖最後由 ZZdaphne 於 08-9-23 23:30 編輯 ]
作者: ZZdaphne 時間: 08-9-23 23:44
原帖由 daisychan 於 08-9-23 22:58 發表 
Dear swallowngxx,
I'm afraid your son is conceptually wrong.
He forgot the statement that " x, y, z are any integers"
8x + 4y - 5z is divisible by 7
Therefore,
16x + 8y - 10z is divisible by 7
16 ...
呢個我都明!!!

作者: ZZdaphne 時間: 08-9-23 23:45
原帖由 cman_li 於 08-9-23 22:50 發表 
唔係計x,y,z 而係用 steps 去証明
Answer:
Let 8x+4y-5z = 7K where K is an integer
Firstly,
2 * ( 8x+ 4y - 5z ) - ( 9x + y + 4z )
= 16x + 8y -10z -9x -y -4z
= 7x +7y -14z
= 7 * (x+y-2z)
=7 * N ...
呢個多左K同N, 複雜左,唔明

作者: cman_li 時間: 08-9-24 08:55
原帖由 ZZdaphne 於 08-9-23 23:45 發表 
呢個多左K同N, 複雜左,唔明
整條數用左好多數學基礎知識
ii) Remainder Theorem
iii) Operating with multivariable linear expression
- Distributive law
- Combine like term
The use of integer K and integer N is to apply Remainder Theorem, i.e.
Dividend = Divisor x Quotient + Remainder
In this question,
Dividend = 8x + 4y - 5z
Divisor = 7
The theorem state that 'Dividend' is divisible by 'Divisor' if and only if 'Remainder' is zero and 'Quotient' must be an integer.
Therefore we can assume Quotient = K and let
8x+4y-5z = 7 * K + zero
= 7K
對於F.2學生,其實都教過以上知識,但同時運用在一條題目去表達就比較難(個人覺得)。其它兩位的解釋比較易明,但一樣運用以上知識。
P.S. 同阿仔一齊做數,人都年輕左,好似回到中學年代
。另外真係幾有滿足感,佢完全當我係偶像
[ 本帖最後由 cman_li 於 08-9-24 10:50 編輯 ]
作者: ZZdaphne 時間: 08-9-24 12:07
原帖由 cman_li 於 08-9-24 08:55 發表 
P.S. 同阿仔一齊做數,人都年輕左,好似回到中學年代
。另外真係幾有滿足感,佢完全當我係偶像
係呀,係呀

我個女F.1 ,
所以我未學到。

[ 本帖最後由 ZZdaphne 於 08-9-24 12:08 編輯 ]
作者: cman_li 時間: 08-9-24 12:58
原帖由 ZZdaphne 於 08-9-24 12:07 發表 
係呀,係呀

我個女F.1 ,
所以我未學到。
語文佢話我out,數學就冇代溝。
有計傾。不過怕佢有數學恐懼。
[ 本帖最後由 cman_li 於 08-9-24 13:00 編輯 ]
| 歡迎光臨 教育王國 (/) |
Powered by Discuz! X1.5 |